Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[(2-amino-3-hydroxypropionato)-nickel(II)]- μ-2-amino-3-hydroxypropionato]

Yu-Xi Sun ${ }^{\text {a }}$ and Zhong-Lu You ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.037$
$w R$ factor $=0.067$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the crystal structure of the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2}\right]_{n}$, the $\mathrm{Ni}^{\mathrm{II}}$ atom has a distorted squarepyramidal coordination geometry. In the basal plane, the Ni atom is coordinated by two N atoms and two O atoms of the amino acid ligands. The apical position is occupied by a propionate O atom of one of the the amino acid ligands, forming chains extending in the \mathbf{b} direction.

Comment

Transition metal compounds containing Schiff base ligands have been of great interest for many years. These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures. Since nickel compounds have important applications in the design and construction of new magnetic materials, the study of nickel compounds is of great interest in various aspects of chemistry (Zolezzi et al., 2002; Ray et al., 2003; Koner et al., 2003). As an extension of the work on the structural characterization of Schiff base complexes, the crystal structure of a mononuclear nickel(II) compound, (I), is reported here.

(I)

Compound (I) is an electronically neutral nickel(II) compound, as shown in Fig. 1. Selected bond distances and angles are given in Table 1. The Ni atom has a square-pyramidal coordination polyhedron, coordinated by two N atoms and three O atoms from two amino acid ligands. The significant distortion of the square pyramid is revealed by the bond angles between the apical and basal donor atoms (Table 1). The bond angles between the donor atoms in the basal positions show less distortion. The apical bond of the square pyramid is much longer than the basal bonds (Table 1).

The bond angles $\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 2$ and $\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{O} 4$ deviate from 90° by $5.95(13)$ and $7.48(13)^{\circ}$, respectively. This is due to the strain created by the five-membered chelate rings, viz. Ni1/N1/C2/C1/O2 and Ni1/N2/C5/C4/O4. The dihedral angle between the two rings, defined by atoms Ni1/N1/O2 and

Received 19 July 2004 Accepted 27 July 2004 Online 31 July 2004

Figure 1
Twice the asymmetric unit of the title compound, (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

The crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines. H atoms have been omitted for clarity.
$\mathrm{Ni} 1 / \mathrm{N} 2 / \mathrm{O} 4$, is 166.2 (2) ${ }^{\circ}$. Atom Ni1 deviates by 0.510 (2) \AA from the plane defined by atoms $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 1 / \mathrm{O} 2$ and by 0.541 (2) \AA from the plane defined by atoms $\mathrm{N} 2 / \mathrm{C} 5 / \mathrm{C} 4 / \mathrm{O} 4$. The torsion angles Ni1-N1-C2-C3 and Ni1-N2-C5-C6 are -150.9 (3) and -145.1 (3) ${ }^{\circ}$, respectively.

In the crystal structure, the Ni atoms are connected via the carboxylate O anions, forming chains parallel to the b axis. The chains are further connected by intermolecular N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming sheets parallel to the $b c$ plane (details are given in Table 2 and Fig. 2).

Experimental

2-Amino-3-hydroxypropionic acid and nickel acetate were available commercially and were used without further purification. 2-Amino-3hydroxypropionic acid ($0.1 \mathrm{mmol}, 10.5 \mathrm{mg}$) and $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.1 \mathrm{mmol}, 21.3 \mathrm{mg})$ were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear green solution. After allowing the..solution to stand in air for 12 d , green block-shaped crystals of (I) had formed at the bottom of the vessel on slow evaporation of the solvent (yield 72.3%). Analysis found: C 26.8, H 4.6, N 10.4%; calculated for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NiN}_{4} \mathrm{O}_{12}$: C $27.0, \mathrm{H} 4.5, \mathrm{~N}$ 10.5%.

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2}\right]$
$M_{r}=266.89$
Monoclinic, $P 2_{1}$
$a=5.638(2) \AA$
$b=8.394$ (2) \AA
$c=9.897$ (2) \AA
$\beta=90.61$ (3) ${ }^{\circ}$
$V=468.4(2) \AA^{3}$
$Z=2$

$$
D_{x}=1.893 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1038
reflections
$\theta=3.2-26.6^{\circ}$
$\mu=2.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, green
$0.32 \times 0.23 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.535, T_{\max }=0.684$
2754 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.067$
$S=0.96$
1822 reflections
138 parameters
H -atom parameters constrained

> 1822 independent reflections
> 1677 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.029$
> $\theta_{\max }=26.5^{\circ}$
> $h=-7 \rightarrow 6$
> $k=-10 \rightarrow 10$
> $l=-12 \rightarrow 6$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right]$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$
Absolute structure: Flack (1983);
781 Friedel pairs
Flack parameter $=0.01$ (2)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ni1-O2	$1.936(3)$	Ni1-N2	$1.988(3)$
Ni1-O4	$1.965(3)$	$\mathrm{Ni} 1-\mathrm{O}^{\mathrm{i}}$	$2.368(3)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$1.979(3)$		
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 4$	$88.56(13)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$	$104.47(14)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1$	$84.05(13)$	$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O}^{\mathrm{i}}$	$90.65(11)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 1$	$164.35(15)$	$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{O}^{\mathrm{i}}$	$106.71(12)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 2$	$171.06(14)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{OF}^{\mathrm{i}}$	$87.21(13)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 2$	$82.52(13)$	$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{O}^{\mathrm{i}}$	$92.42(12)$

Symmetry code: (i) $1-x, y-\frac{1}{2}, 2-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.14	$2.973(4)$	153
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 5^{\mathrm{ii}}$	0.90	2.30	$3.005(4)$	135
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.90	2.16	$2.970(4)$	149
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{iv}}$	0.90	2.11	$2.935(5)$	153
$\mathrm{O}^{\mathrm{iv}}-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.90	$2.691(4)$	163
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{v}}$	0.82	1.93	$2.730(4)$	166

Symmetry codes: (i) $1-x, y-\frac{1}{2}, 2-z$; (ii) $-x, y-\frac{1}{2}, 2-z$; (iii) $x-1, y, z$; (iv) $1-x, y-\frac{1}{2}, 1-z$; (v) $x, y, z-1$.

metal-organic papers

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and $\mathrm{N}-$ H distances of $0.97-0.98,0.82$ and $0.90 \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C} / \mathrm{N})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Qufu Normal University for the research grant.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Koner, S., Saha, S., Okamoto, K. \& Tuchagues, J.-P. (2003). Inorg. Chem. 42, 4668-4672.
Ray, M. S., Mukhopadhyay, G., Drew, M. G. B., Lu, T.-H., Chaudhuri, S. \& Ghosh, A. (2003). Inorg. Chem. Commun. 6, 961-965.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zolezzi, S., Spodine, E. \& Decinti, A. (2002). Polyhedron, 21, 55-59.

